
Single-Mode 2x100G QSFP-DD CWDM4 10km Transceiver

Features

- Supports 206Gbps
- Single 3.3V Power Supply
- Power dissipation < 8.0W
- up to 10km over SMF
- RoHS-6 compliant (lead-free)
- QSFP-DD MSA Compliant
- ♦ 8x25G electrical interface
- Dual CS connector
- Commercial case temperature range of 0°C to 70°C
- 8*25Gbps DFB-based CWDM transmitter
- PIN and TIA array on the receiver side
- I²C interface with integrated Digital Diagnostic

Monitoring

- Safety Certification: TUV/UL/FDA^{*Note*}
- RoHS Compliant

Applications

• 2x100G QSFP-DD CWDM4

applications with FEC

Ordering Information

Part No.	Data Rate	Fiber	Distance *(note2)	Interface	Temp.	DDMI
DO-2QDCLR-10	206Gbps	SMF	10km	CS	0~+70 ℃	Yes

Product Description

The QSFP-DD transceiver module is designed for use in 200 Gigabit Ethernet links over 10km single mode fiber. The implementation of an 8 channel TOSA and ROSA to create a Dual CWDM4 transceiver. The 8 channel optical engines, which include dual embedded CWDM4 multiplexers. The 2x100G CWDM4 QSFP-DD transceiver is characterized by an 8x25G NRZ electrical interface and Dual CS connectors. And compliant with QSFP-DD MSA.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	Vcc	-0.5	3.6	V
Operating Relative Humidity	RH	5	85	%
Receiver Damage Threshold, per Lane	Rxdmg	5.5		dBm

*Exceeding any one of these values may damage the device permanently.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature	Тс	0	25	70	°C
Power Supply Voltage	Vcc	3.135	3.3	3.465	V
Power Dissipation	PD			8	W
Instantaneous peak current	lcc_ip			3200	mA
Sustained peak current	lcc_sp			2640	mA
Steady state current	lcc			2308	mA

* Power Supply specifications, Instantaneous, sustained and steady state current compliant with QSFP-DD MSA Power Classification.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes			
Transmitter									
Differential data input swing per lane				900	mv _{p-p}				
Input Impedance (Differential)	Zin			10	%				
Stressed input parameters									
Eye width		0.46			UI				
Applied pk-pk sinusoidal jitter	IEEE 802.3bm Table 88-13								
Eye height		95			mv				
DC common mode voltage		-350		2850	mv				
		Receiv	er						
Differential output amplitude		200		900	mv _{p-p}				

Output Impedance	Zout			10	%		
(Differential)							2.00/
Output Rise/Fall Time	t _r /t _f	12			ps	20%~8	30%
Eye width		0.57			UI		
Eye height differential		228			mv		
Vertical eye closure				5.5	dB		
Parameter	Symbol		/lin.	Турі	cal	Max.	Unit
		ansmi	tter				
Signaling Speed per Lane	BRAVE			25.	78		Gbps
Data Rate Variation		-	100			+100	ppm
Lane_0/4 Center Wavelength	λC0	12	264.5			1277.5	nm
Lane_1/5 Center Wavelength	λC1	12	284.5			1297.5	nm
Lane_2/6 Center Wavelength	λC2	13	304.5			1317.5	nm
Lane_3/7 Center Wavelength	λC3	13	324.5			1337.5	nm
Total Average Output Power	Po					8.5	dBm
Average Launch Power each Lane*(Note3)	Peach	-	6.5			2.5	dBm
Transmit OMA each Lane *(Note4)	TxOMA	-	4.0			2.5	dBm
Launch power in OMA minus TDP, each lane	OMA-TDP	-	·5.0				dBm
Transmitter and Dispersion Penalty per Lane *(Note5)	TDP					3	dB
Side Mode Suppression Ratio	SMSR		30				dB
Optical Return Loss Tolerance						20	dB
Transmitter Reflectance *(Note6)						-20	dB
Extinction Ratio	ER		3.5				dB
Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3}*(Note7)			{0.31, 0	.4, 0.45	, 0.34	, 0.38, 0.4}	
	F	Receiv	er				
Signaling Speed per Lane	BRAVE			25.	78		Gbps
Data Rate Variation		-	100			+100	ppm
Damage threshold	Rxdmg		3.5				dBm
Lane_0/4 Center Wavelength	λ _{C0}	1:	264.5			1277.5	nm
Lane_1/5 Center Wavelength	λ _{C1}		284.5	1		1297.5	nm
Lane_2/6 Center Wavelength	λ _{C2}		304.5			1317.5	nm
Lane_3/7 Center Wavelength	λ _{C3}		324.5			1337.5	nm

Optical Characteristics

Average receive power *(Note8)	Rxpow	-13		2.5	dBm	
Receive Power (OMA) per Lane	RxOMA			2.5	dBm	
Unstressed Receiver Sensitivity	Rxsens			-11.5	dBm	
(OMA) per Lane *(Note9)	RXSEIIS			-11.5	UDIII	
Stressed Receiver Sensitivity	DV			-8.6	dBm	
(OMA) per Lane *(Note10)	RX_{SRS}			-0.0	UDIII	
Optical Return Loss	ORL			-26	dB	
Conditions of stressed receiver sensitivity test						
Vertical Eye Closure Penalty *(Note11)	VECP	2.6			dB	
Stressed J2 Jitter *(Note11)	J2	0.33			UI	
Stressed J4 Jitter *(Note11)	J4	0.48			UI	
SRS eye mask definition {X1,		(0.20.)				
X2, X3, Y1, Y2, Y3} *(Note11)		{0.39, 0.5, 0.5, 0.39, 0.39, 0.4}				
LOS Assert	LOSA	-25			dBm	
LOS De-Assert	LOSD			-15	dBm	
LOS Hysteresis		0.5			dB	

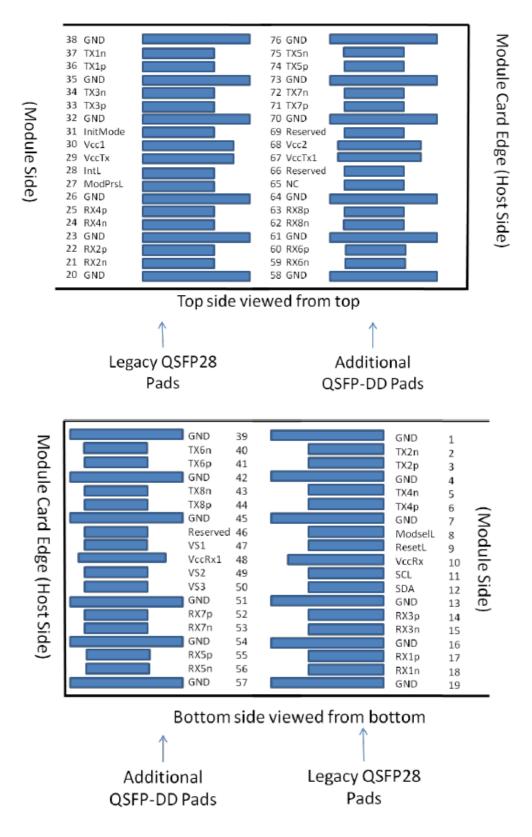
Note3: Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

Note4: Even if the TDP < 1.0dB, the OMA (min) must exceed this value.

Note5: TDP does not include a penalty for multi-path interference (MPI).

Note6: Transmitter reflectance is defined looking into the transmitter.

Note7: Hit ratio of 5x10⁻⁵


Note8: Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance. Note9: Sensitivity is specified at 5x10⁻⁵ BER.

Note10: Measured with conformance test signal at TP3 for BER = 5×10^{-5} .

Note11: Vertical eye closure penalty, stressed eye J2 Jitter, stressed eye J4 Jitter, and SRS eye mask definition are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

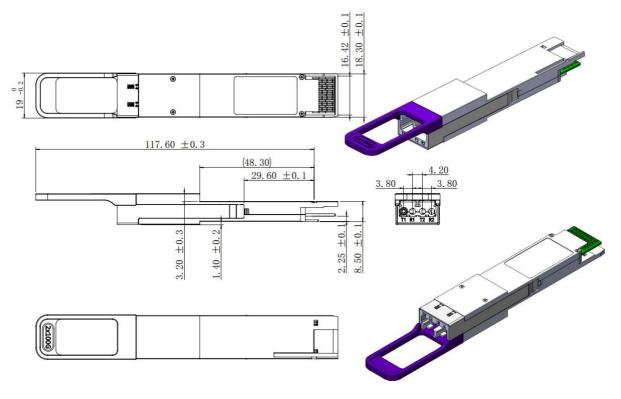
QSFP-DD Transceiver Electrical Pad Layout

Pin	Logic Symbol Description		Plug Sequence⁴	Not es	
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	
9	LVTTL-I	ResetL	Module Reset	3B	
10		VccRx	+3.3V Power Supply Receiver	2B	2
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3B	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	1B	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3B	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26		GND	Ground	1B	1
27	LVTTL-O	ModPrsL	Module Present	3B	
28	LVTTL-O	IntL	Interrupt	3B	
29		VccTx	+3.3V Power supply transmitter	2B	2
30		Vcc1	+3.3V Power supply	2B	2
31	LVTTL-I	LPMode	Low Power Mode	3B	
32		GND	Ground	1B	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	
38		GND	Ground	1B	1

Pin Arrangement and Definition

40 41	CML-I	Tuce			
		Tx6n	Transmitter Inverted Data Input	ЗA	
40	CML-I	Тх6р	Transmitter Non-Inverted Data Input	ЗA	
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	ЗA	
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	ЗA	
45		GND	Ground	1A	1
46		Reserved	For future use	ЗA	3
47		VS1	Module Vendor Specific 1	ЗA	3
48		VccRx1	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	ЗA	3
50		VS3	Module Vendor Specific 3	ЗA	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	ЗA	
53	CML-O	Rx7n	Receiver Inverted Data Output	ЗA	
54		GND	Ground	1A	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	ЗA	
56	CML-O	Rx5n	Receiver Inverted Data Output	ЗA	
57		GND	Ground	1A	1
58		GND	Ground	1A	1
59	CML-O	Rx6n	Receiver Inverted Data Output	ЗA	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A	
61		GND	Ground	1A	1
62	CML-O	Rx8n	Receiver Inverted Data Output	ЗA	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A	
64		GND	Ground	1A	1
65		NC	No Connect	3A	3
66		Reserved	For future use	3A	3
67		VccTx1	3.3V Power Supply	2A	2
68		Vcc2	3.3V Power Supply	2A	2
69		Reserved	For Future Use	3A	3
70		GND	Ground	1A	1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A	
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A	
73		GND	Ground	1A	1
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	ЗA	
75	CML-I	Tx5n	Transmitter Inverted Data Input	ЗA	
76		GND	Ground	1A	1
1: QSF	P-DD uses comn	non ground (G	ND) for all signals and supply (power).	All are common	within

2: VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. VccRx, VccRx1,



Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA.

3: All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 kOhms and less than 100 pF.
4: Plug Sequence specifies the mating sequence of the host connector and module. The sequence is

1A, 2A, 3A, 1B, 2B, 3B. Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B, followed by 3A,3B.

Mechanical Specifications

