

400Gb/s QSFP-DD Parallel Active Optical Cable (AOC)

D-DQ8FNMxxx-N00

Product Specification

Features

- QSFP-DD MSA compliant
- 8 parallel full-duplex channels
- Compliant to IEEE802.3bs
- Up to 100m OM3 MMF transmission
- Operating case temperature: 0 to 70°C
- 8x53.125Gb/s electrical interface (400GAUI-8)
- Data Rate 53.125Gbps (PAM4) per channel.
- Maximum power consumption 12W
- RoHS compliant

Applications

- 400G Ethernet
- Infiniband EDR

Part Number Ordering Information

D-DQ8FNMxxx-N00	QSFP-DD active optical cable with full real-time digital diagnostic
	monitoring

where "xxx" denotes cable length in meters. Examples of cable length offered are as follows:

 $xxx = 001 ext{ for } 1m$ $xxx = 050 ext{ for } 50m$ $xxx = 005 ext{ for } 5m$ $xxx = 075 ext{ for } 75m$ $xxx = 010 ext{ for } 10m$ $xxx = 100 ext{ for } 100m$

1. General Description

This product is a high data rate parallel active optical cable (AOC), to overcome the bandwidth limitation of traditional copper cable. The AOC offers 8 independent data transmission channels and 8 data receiving channels via a multimode fiber cable, each capable of 50Gb/s operation. Consequently, an aggregate data rate of 400Gb/s over 100 meters transmission can be achieved by this product, to support the ultra-fast computing data exchange.

The product is designed with form factor, optical/electrical connection according to the QSFP-DD Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

2. Functional Description

This product converts the parallel electrical input signals into parallel optical signals (light), by a driven Vertical Cavity Surface Emitting Laser (VCSEL) array. The light propagates through multimode fibers inside the fiber cable individually, and is captured by the photo diode array. The optical signals are converted into parallel electrical signals and outputted. Consequently, each terminal of the cable has 16 ports, 8 for data transmission and 8 for data receiving, to provide totally 400Gb/s data exchange. Figure 1 shows the functional block diagram of the parallel AOC.

A single +3.3V power supply is required to power up this product. All the power supply pins are internally connected and should be applied concurrently. As per MSA specifications the module offers seven low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, InitMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Initialize Mode (InitMode) is an input signal. It is pulled up to Vcc in the QSFP-DD module. The InitMode signal allows the host to define whether the QSFP-DD module will initialize under host software control (InitMode asserted High) or module hardware control (InitMode deasserted Low). Under host software control, the module shall remain in Low Power Mode until software enables the

transition to High Power Mode, as defined in the QSFP-DD Management Interface Specification. Under hardware control (InitMode de-asserted Low), the module may immediately transition to High Power Mode after the management interface is initialized. The host shall not change the state of this signal while the module is present. In legacy QSFP applications, this signal is named LPMode. See SFF-8679 for LPMode signal description.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

3. AOC Block Diagram

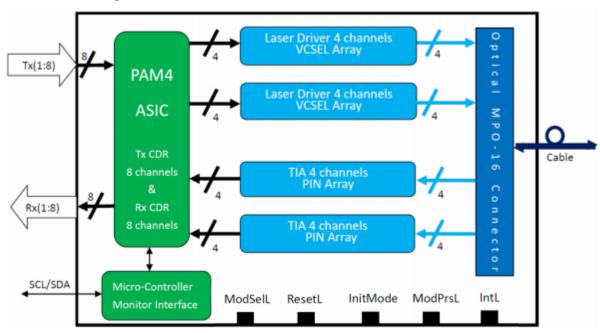


Figure 2. Block Diagram of One of the QSFP-DD AOC End Modules

4. Pin Assignment and Description

The electrical pinout of the QSFP-DD module is shown in Figure 2 below.

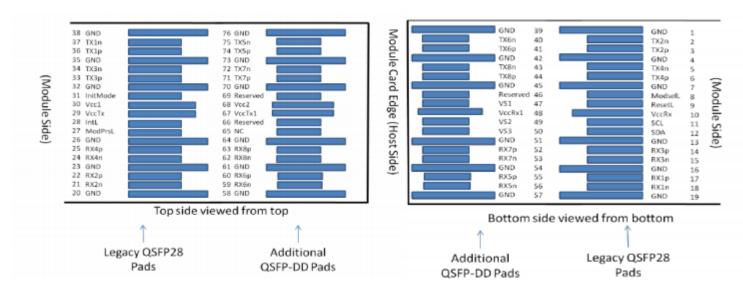


Figure 2. MSA Compliant Connector

Pin Definition

Pin #	Logic	Symbol	Description	Plug Sequence
1		GND	Ground	1B
2	CML I	Tx2n	Transmitter Inverted Data Input	3B
3	CML I	Tx2p	Transmitter Non-Inverted Data Input	3B
4		GND	Ground	1B
5	CML I	Tx4n	Transmitter Inverted Data Input	3B
6	CML I	Tx4p	Transmitter Non-Inverted Data Input	3B
7		GND	Ground	1B
8	LVTTL I	ModSelL	Module Select	3B
9	LVTTL I	ResetL	Module Reset	3B
10		VccRx	+3.3V Power Supply Receiver	2B
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3B
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B
13		GND	Ground	1B
14	CML O	Rx3p	Receiver Non-Inverted Data Output	3B
15	CML O	Rx3n	Receiver Inverted Data Output	3B
16	GND	Ground	1B	
17	CML O	Rx1p	Receiver Non-Inverted Data Output	3B
18	CML O	Rx1n	Receiver Inverted Data Output	3B
19		GND	Ground	1B

20		GND	Ground	1B
21	CML O	Rx2n	Receiver Inverted Data Output	3B
22	CML O	Rx2p	Receiver Non-Inverted Data Output	3B
23		GND	Ground	1B
24	CML O	Rx4n	Receiver Inverted Data Output	3B
25	CML O	Rx4p	Receiver Non-Inverted Data Output	3B
26		GND	Ground	1B
27	LVTTL-O	ModPrsL	Module Present	3B
28	LVTTL-O	IntL	Interrupt	3B
29		VccTx	+3.3V Power supply transmitter	2B
30		Vcc1	+3.3V Power supply	2B
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	3B
32		GND	Ground	1B
33	CML I	Tx3p	Transmitter Non Inverted Data Input	3B
34	CML I	Tx3n	Transmitter Inverted Data Input	3B
35		GND	Ground	1B
36	CML I	Tx1p	Transmitter Non Inverted Data Input	3B
37	CML I	Tx1n	Transmitter Inverted Data Input	3B
38		GND	Ground	1B
39		GND	Ground	1A
40	CML I	Tx6n	Transmitter Inverted Data Input	3A
41	CML I	Тх6р	Transmitter Non Inverted Data Input	3A
42		GND	Ground	1A
43	CML I	Tx8n	Transmitter Inverted Data Input	3A
44	CML I	Tx8p	Transmitter Non Inverted Data Input	3A
45		GND	Ground	1A
46		Reserved	For future use	3A
47		VS1	Module Vendor Specific 1	3A
48		VccRx1	3.3V Power Supply	2A
49		VS2	Module Vendor Specific 2	3A
50		VS3	Module Vendor Specific 3	3A
51		GND	Ground	1A
52	CML O	Rx7p	Receiver Non-Inverted Data Output	3A
53	CML O	Rx7n	Receiver Inverted Data Output	3A
54		GND	Ground	1A
55	CML O	Rx5p	Receiver Non-Inverted Data Output	3A
56	CML O	Rx5n	Receiver Inverted Data Output	3A
57		GND	Ground	1A
58		GND	Ground	1A
59	CML O	Rx6n	Receiver Inverted Data Output	3A
60	CML O	R x6p	Receiver Non-Inverted Data Output	3A
61		GND	Ground	1A

3A
ıt 3A
1A
3A
3A
2A
2A
3A
1A
out 3A
3A
1A
out 3A
3A
1A

5. Recommended Power Supply Filter

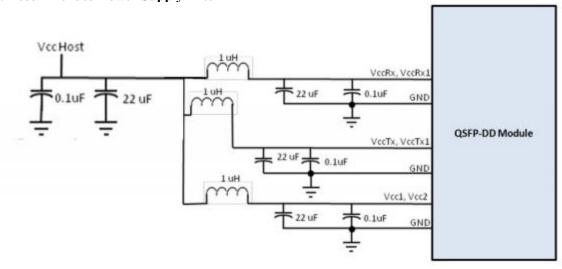


Figure 3. Recommended Power Supply Filter

6. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Units	Notes
Storage Temperature	Ts	-40	85	degC	
Operating Case Temperature	Тор	0	70	degC	
Power Supply Voltage	Vcc	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	

7. Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typical	Max	Units	Notes
Operating Case Temperature	Тор	0		70	degC	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate, each Lane			26.5625		GBd	PAM4
Data Rate Accuracy		-100		100	ppm	
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴		
Post-FEC Bit Error Ratio				1x10 ⁻¹²		1
Link Distance with OM3	D	0.5		100	m	2

Notes:

- 1. FEC provided by host system.
- 2. FEC required on host system to support maximum distance.

8. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Test Point	Min	Typical	Max	Units	Notes	
Power Consumption				12	W		
Supply Current	Icc			3.63	A		
Transmitter (each Lane)							
Signaling Rate, each Lane	TP1 $26.5625 \pm 100 \text{ ppm}$				GBd		
Differential pk-pk Input VoltageTolerance	TP1a	900			mVpp	1	

Differential Termination Mismatch	TP1			10	%	
Differential Input Return Loss	TP1	IEEE 802.3- 2015 Equation (83E-5)			dB	
Differential to Common Mode Input Return Loss	TP1	IEEE 802.3- 2015 Equation (83E-6)			dB	
Module Stressed Input Test	TP1a	See IEEE 8	02.3bs 120E	E.3.4.1		2
Single-ended Voltage Tolerance Range (Min)	TP1a	-0	0.4 to 3.3		V	
DC Common Mode Input Voltage	TP1	-350		2850	mV	3
	Rec	eiver (each Lane)				
Signaling Rate, each lane	TP4	26.562	5 ± 100 ppn	n	GBd	
Differential Peak-to-Peak Output Voltage	TP4			900	mVpp	
AC Common Mode Output Voltage, RMS	TP4			17.5	mV	
Differential Termination Mismatch	TP4			10	%	
Differential Output Return Loss	TP4	IEEE 802.3- 2015 Equation (83E-2)				
Common to Differential Mode Conversion Return Loss	TP4	IEEE 802.3- 2015 Equation (83E-3)				
Transition Time, 20% to 80%	TP4	9.5			ps	
Near-end Eye Symmetry MaskWidth (ESMW)	TP4		0.265		UI	
Near-end Eye Height, Differential	TP4	70			mV	
Far-end Eye Symmetry Mask Width (ESMW)	TP4		0.2		UI	
Far-end Eye Height,	TP4	30			mV	

Differential					
Far-end Pre-cursor ISI Ratio	TP4	-4.5	2.5	%	
Common Mode Output Voltage (Vcm)	TP4	-350	2850	mV	3

Notes:

- 1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- Meets BER specified in IEEE 802.3bs 120E.1.1.
- 3. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

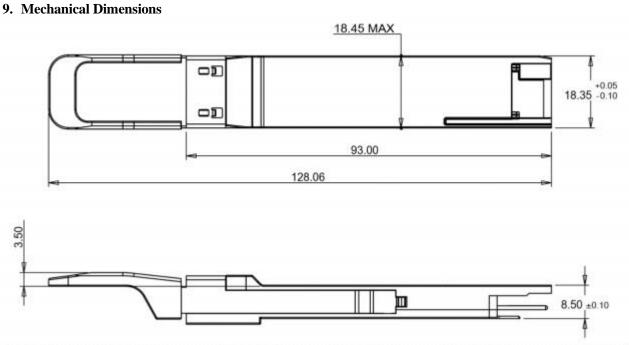


Figure 4. Mechanical Outline

10. ESD

This transceiver is specified as ESD threshold 1kV for high speed data pins and 2kV for all others electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

11. Laser Safety

This is a Class 1 Laser Product according to EN 60825-1:2014. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.