

QSFP-DD800 2x400G FR4 2km Optical Transceiver D-DC8CNT-N00

Product Specification

Preliminary

Features

- QSFP-DD MSA compliant
- CMIS 5.0 Fully Compliant
- 2 sets of 4 CWDM lanes MUX/DEMUX design
- Electrical interface: compliant with 800GAUI-8 (8x106.25Gb/s) interface defined in IEEE 802.3ck
- Up to 2km transmission on single mode fiber (SMF) with KP4 FEC support at the host
- Operating case temperature: 0 to 70°C
- Rate Date operation at 106.25Gbps (PAM4) per channel
- Maximum power consumption 17W
- Dual duplex CS connector

Applications

- Data Center Interconnect
- 800G Ethernet
- InfiniBand interconnects
- Enterprise networking

Part Number Ordering Information

D-DC8CNT-N00 QSFP- DD800 2x400G FR4 optical transceiver with dual duplex CS connector and with full real-time digital diagnostic monitoring and pull tab

1. General Description

This product is a transceiver module designed for 2km optical communication applications. The design is compliant to IEEE 802.3ck Specification. The module converts 8 input channels of 106.25Gb/s electrical data to 2 sets of 4 CWDM optical signals and multiplexes them into 2 sets of a single channel for 425Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes 2 sets of a single channel 425Gb/s signal inputs into 2 sets of 4 CWDM channel signals and converts them to 8 output channels of 106.25Gb/s electrical data.

The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm as members of the CWDM wavelength grid defined in ITU-T G.694.2. It contains an optical dual duplex CS connector for the optical interface and a 76-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module. Host FEC is required to support up to 2km fiber transmission.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

2. Functional Description

The module incorporates 2 sets of 4 independent Channels, on CWDM4 1271/1291/1311/1331nm center wavelength, operating at 106.25Gb/s for each channel. The transmit path of the module incorporates a bi-directional PAM4 retimer ASIC integrated with an 8-channel modulator driver, 8 externally modulated lasers (two on each CWDM channel) and two optical multiplexers. On the receive path, two optical demultiplexers are coupled to 8 photodiodes and two 4-channel TIA arrays, along with the PAM4 retimer. The electrical interface is compliant with IEEE 802.3ck and QSFP-DD MSA in the transmitting and receiving directions, and the optical interface is compliant with dual duplex CS optical connector. Figure 1 shows the functional block diagram of this product.

A single +3.3V power supply is required to power up this product. All the power supply pins are internally connected and should be applied concurrently. As per MSA specifications the module offers seven low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, InitMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of

this product on a single 2-wire interface bus – individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Initialize Mode (InitMode) is an input signal. It is pulled up to Vcc in the QSFP-DD module. The InitMode signal allows the host to define whether the QSFP-DD module will initialize under host software control (InitMode asserted High) or module hardware control (InitMode deasserted Low). Under host software control, the module shall remain in Low Power Mode until software enables the transition to High Power Mode, as defined in the QSFP-DD Management Interface Specification. Under hardware control (InitMode de-asserted Low), the module may immediately transition to High Power Mode after the management interface is initialized. The host shall not change the state of this signal while the module is present. In legacy QSFP applications, this signal is named LPMode. See SFF-8679 for LPMode signal description.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

3. Transceiver Block Diagram

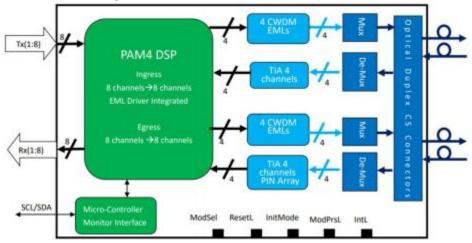


Figure 1. Transceiver Block Diagram

4. Pin Assignment and Description

The electrical pinout of the QSFP-DD module is shown in Figure 2 below.

Figure 2. MSA Compliant Connector

Pin Definition

Pin #	Logic	Symbol	Description	Plug Sequence	Notes
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	

9	LVTTL-I	ResetL	Module Reset	3B	
10		VccRx	+3 .3V Power Supply Receiver	2B	2
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3B	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16	GND	Ground	1B		1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	1B	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3B	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26		GND	Ground	1B	1
27	LVTTL-O	ModPrsL	Module Present	3B	
28	LVTTL-O	IntL	Interrupt	3B	
29		VccTx	+3.3V Power supply transmitter	2B	2
30		Vcc1	+3.3V Power supply	2B	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	3B	
32		GND	Ground	1B	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	
38		GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A	
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	3A	
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
47		VS1	Module Vendor Specific 1	3A	3
48		VccRx1	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3

50		VS3	Module Vendor Specific 3	3A	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	
53	CML-O	Rx7n	Receiver Inverted Data Output	3A	
54		GND	Ground	1A	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A	
56	CML-O	Rx5n	Receiver Inverted Data Output	3A	
57		GND	Ground	1A	1
58		GND	Ground	1A	1
59	CML-O	Rx6n	Receiver Inverted Data Output	3A	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A	
61		GND	Ground	1A	1
62	CML-O	Rx8n	Receiver Inverted Data Output	3A	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A	
64		GND	Ground	1A	1
65		NC	No Connect	3A	3
66		Reserved	For future use	3A	3
67		VccTx1	3.3V Power Supply	2A	2
68		Vcc2	3.3V Power Supply	2A	2
69		Reserved	For Future Use	3A	3
70		GND	Ground	1A	1
71	CML-I	Тх7р	Transmitter Non-Inverted Data Input	3A	
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A	
73		GND	Ground	1A	1
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	3A	
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A	
76		GND	Ground	1A	1

5. Recommended Power Supply Filter

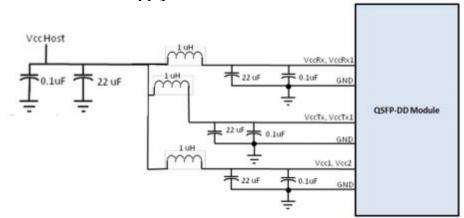


Figure 3. Recommended Power Supply Filter

6. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Units	Notes
Storage Temperature	Ts	-40	85	degC	
Operating Case Temperature	Тор	0	70	degC	
Power Supply Voltage	Vcc	-0.5	3.6	٧	
Power Dissipation			17	W	
Relative Humidity (non-condensation)	RH	0	85	%	

7. Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typical	Max	Units	Notes
Operating Case Temperature	Тор	0		70	degC	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate, each Lane			106.25		Gbps	
Data Rate Accuracy		-100		100	ppm	
Pre-FEC Bit Error Ratio		, de (light)		2.4x10 ⁻⁴		
Post-FEC Bit Error Ratio		COU. S. 10		1x10 ⁻¹²		1
Link Distance with G.652	D	2		2000	m	2

Notes:

- 1. FEC provided by host system.
- 2. FEC required on host system to support maximum distance.

8. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Test Point	Min	Typical	Max	Units	Notes			
Power Consumption				17	W				
Supply Current	lcc			5 15	Α				
Transmitter (each Lane)									
Signaling Rate, each Lane	TP1	53.125 ± 100 ppm			GBd				
Differential pk-pk input voltage tolerance	TP1a	750			mV				

AC common-mode RMS voltage tolerance	TP1a	25			mV		
Differential to common- mode return loss, <i>RLcd</i>	TP1	Equation(12 0G-2)			dB		
Effective return loss, ERL	TP1	8.5			dB		
Differential termination mismatch	TP1			10	%		
Module stressed input tolerance	TP1a	S	ee 120G.3.4.3			1	
Single-ended voltage tolerance range	TP1a	-0.4		3.3	V		
DC common-mode voltage	TP1	-350		2850	mV	2	
Receiver (each Lane)							
Signaling Rate, each lane	TP4	53 125 ± 100 ppm			GBd	3	
AC common-mode output voltage, RMS	TP4			25	mV		
Differential peak-to-peak							
output voltage Short mode Long mode	TP4	Contante (1880)		600 845	mV mV		
Eye height, differential		15			mV		
Vertical eye closure				12	dB		
Common-mode to differential return loss	TP4	Equation(12 0G-1)			dB		
Effective return loss, ERL		8 5			dB		
Differential termination mismatch	TP4			10	%		
Transition time (20% to 80%)	TP4	8.5			ps		
DC common-mode output voltage	TP4	-350		2850	mV	2	

Notes:

- 1. Meets BER specified in 120G.1.1.
- 2 . DC common-mode voltage generated by the host. Specification includes effects of ground offset voltage.
- 3. The signaling rate range is derived from the PMD receiver input.

9. Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Units	Notes
	LO	1264 5	1271	1277 5	nm	
	L1	1284.5	1291	1297.5	nm	
Wavelength Assignment	L2	1304.5	1311	1317.5	nm	
	L3	1324.5	1331	1337.5	nm	
	-	Fransmitter				
Data Rate, each Lane		53.12	5 ± 100 pp	om	GBd	
Modulation Format			PAM4	<u>r</u>		
Side-mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power	P_{T}			10.4	dBm	
Average Launch Power, each Lane	P _{AVG}	-3.2		4.4	dBm	1
Outer Optical Modulation Amplitude (OMA _{outer}), each Lane	P _{OMA}	max(-0.2,- 1.6+TDECQ)		3.7	dBm	2
Transmitter and Dispersion Eye Closure for PAM4, each Lane	TDECQ	, se ^{flig} et		3.4	dB	
Transmitter eye Closure for PAM4, each Lane	TECQ	Collins To		3.4	dB	
TDECQ-TECQ				2.5	dB	
Over/under-shoot				22	%	
Transmitter power excursion				1.8	dBm	
Extinction Ratio	ER	3.5			dB	
Difference in Launch Power between any Two Lanes (OMA _{outer})				3.9	dB	
RIN _{17.1} OMA	RIN			-136	dB/Hz	
Optical Return Loss Tolerance	TOL			17.1	dB	
Transmitter Reflectance	R _T			-26	dB	3
Transmitter Transition Time				17	ps	

Average Launch Power of OFF Transmitter, each Lane	P _{off}			-16	dBm			
		Receiver						
Data Rate, each Lane		53.12	5 ± 100 թբ	om	GBd			
Modulation Format			PAM4					
Damage Threshold, each Lane	THa	5.4			dBm	4		
Average Receive Power, each Lane		-7.2		4.4	dBm	5		
Receive Power (OMA _{outer}), each Lane				3.7	dBm			
Difference in Receiver Power between any Two Lanes (OMA _{outer})				4.1	dB			
Receiver Sensitivity (OMA _{outer}), each Lane	SEN			Equation (1)	dBm	6		
Stressed Receiver Sensitivity (OMA _{outer}), each Lane	SRS			-2.6	dBm	7		
Receiver Reflectance	R _R	College, 200,		-26	dB			
LOS Assert	LOSA	-20			dBm			
LOS De-assert	LOSD			-10.3	dBm			
LOS Hysteresis	LOSH	0.5			dB			
Stressed Condi	Stressed Conditions for Stress Receiver Sensitivity (Note 8)							
Stressed Eye Closure for PAM4 (SECQ), Lane under Test		3.4			dB			
OMA _{outer} of each Aggressor Lane		1.4			dBm			

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. The values for OMA_{outer} each lane (min) vary with TDECQ. The relationships are illustrated in Figure 4 along with the values for OMA_{outer} each lane (max).

- 3. Transmitter reflectance is defined looking into the transmitter.
- 4. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.
- 5. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 6. Receiver sensitivity (OMA_{outer}) is informative and is defined for a transmitter with a value of TECQ up to 3.4 dB. Receiver sensitivity should meet Equation (1), which is illustrated in Figure 4.

$$RS = \max(-4.6, TECQ - 6.0) dBm$$
 (1)

Where:

RS is the receiver sensitivity, and

TECQ is the TECQ of the transmitter used to measure the receiver

sensitivity.

- 7. Measured with conformance test signal at TP3 for the BER equal to 2.4x10⁻⁴.
- 8. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

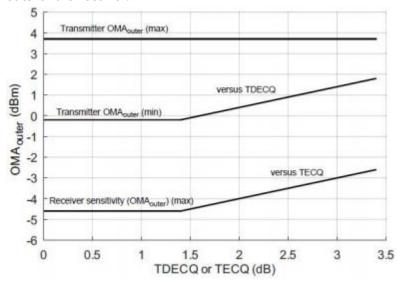


Figure 4. Illustration of Transmitter OMA_{outer} and Receiver Sensitivity Mask for 2x400G-FR4

10. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min	Max	Units	Notes
Temperature monitor absolute error	DMI_Tem _p	-3	3	degC	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC -	-0.1	0.1	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_lbias_Ch	-10%	10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1

Notes:

1 . Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

11. Mechanical Dimensions

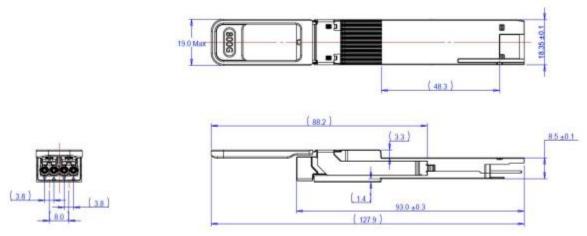


Figure 5. Mechanical Outline

12. ESD

This transceiver is specified as ESD threshold 1kV for high speed data pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

13. Laser Safety

This is a Class I Laser Product, or Class 1 Laser Product according to IEC/EN 60825-1:2014.

This product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019.

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

