

200G QSFP-DD Direct Attach Cable Datasheet

General Description

QSFP-DD passive copper cable assembly feature eight differential copper pairs, providing four data transmission channels at speeds up to 28Gbps per channel, and meets 200G Ethernet and InfiniBand Enhanced Data Rate(EDR) requirements. Available in a broad rang of wire gages-from 28AWG through 30AWG-this 200G copper cable assembly features low insertion loss and low cross talk.

Features and Benefits

- Compatible with IEEE 802.3bj and IEEE 802.3cd
- Supports aggregate data rates of 200Gbps
- Optimized construction to minimize insertion loss and cross talk
- Pull-to-release slide latch design
- 28AWG through 30AWG cable
- Straight and break out assembly configurations available
- Customized cable braid termination limits EMI radiation
- Customizable EEPROM mapping for cable signature
- RoHS omplia

Product Applications

- Switches.servers and routers
- Data Center networks
- Storage area networks
- High performance computing
- Telecommunication and wireless infrastructure
- Medical diagnostics and networking
- Test and measurement equipment

Industry Standards

- 200G Ethernet(IEEE 802.3cd)
- InfiniBand EDR

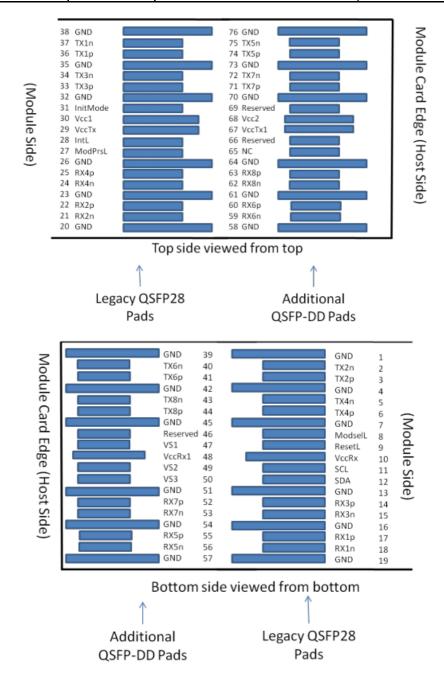
High Speed Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Note
Differential Impedance	TDR	90	100	110	Ω	
Insertion loss	SDD21	-16.06		-8	dB	At 13.28 GHz
Differential Return Loss	SDD11	-12.45		See 1	dB	At 0.05 to 4.1 GHz
Differential Netarri 2033	SDD22	-3.12		See 2	dB	At 4.1 to 19 GHz
Common-mode to common-mode output return loss	SCC11 SCC22			-2	dB	At 0.2 to 19 GHz
Differential to common-mode return loss	SCD11 SCD22	-12		See 3	dB	At 0.01 to 12.89 GHz
	SODZZ	-10.58		See 4		At 12.89 to 19 GHz
Differential to common Mode	\(\(\) \(\) \(\) \(\) \(\)			-10	dB	At 0.01 to 12.89 GHz
Conversion Loss				See 5		At 12.89 to 15.7 GHz
				-6.3		At 15.7 to 19 GHz

- Notes:

 1. Reflection Coefficient given by equation SDD11(dB) < -16.5 + 2 × SQRT(f), with f in GHz
- Reflection Coefficient given by equation SDD11(dB) < -10.66 + 14 x log10(f/5.5), with f in GHz
 Reflection Coefficient given by equation SCD11(dB) < -22 + (20/25.78)*f, with f in GHz
 Reflection Coefficient given by equation SCD11(dB) < -15 + (6/25.78)*f, with f in GHz

- 5. Reflection Coefficient given by equation SCD21(dB) < -27 + (29/22)*f, with f in GHz

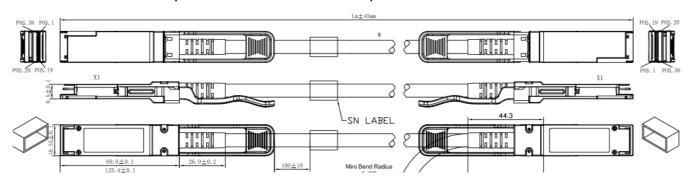

Pin Descriptions

QSFP-DD Pin Function Definition

Pin	Logic	Symbol	Description
1		GND	Ground
2	CML-I	Tx2n	Transmitter Inverted Data Input
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input
4		GND	Ground
5	CML-I	Tx4n	Transmitter Inverted Data Input
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input
7		GND	Ground
8	LVTTL-I	ModSelL	Module Select
9	LVTTL-I	ResetL	Module Reset
10		Vcc Rx	+3.3V Power Supply Receiver

	LVCMOS-	001	
11	I/O	SCL	2-wire serial interface clock
	LVCMOS-	SDA	
12	I/O	SDA	2-wire serial interface data
13		GND	Ground
14	CML-O	Rx3p	Receiver Non-Inverted Data Output
15	CML-O	Rx3n	Receiver Inverted Data Output
16		GND	Ground
17	CML-O	Rx1p	Receiver Non-Inverted Data Output
18	CML-O	Rx1n	Receiver Inverted Data Output

19		GND	Ground
----	--	-----	--------


20		GND	Ground
21	CML-O	Rx2n	Receiver Inverted Data Output
22	CML-O	Rx2p	Receiver Non-Inverted Data Output
23	OIVIL O	GND	Ground
24	CML-O	Rx4n	Receiver Inverted Data Output
25	CML-O	Rx4p	Receiver Non-Inverted Data Output
26	02	GND	Ground
27	LVTTL-O	ModPrsL	Module Present
28	LVTTL-O	IntL	Interrupt
29	LVIILO	Vcc Tx	+3.3V Power supply transmitter
30		Vcc1	+3.3V Power supply
31	LVTTL-I	LPMode	Low Power Mode
32	LVIILI	GND	Ground
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input
34	CML-I	Tx3n	Transmitter Inverted Data Input
35	OIVIL	GND	Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Input
38	OIVIL I	GND	Ground
39		GND	Ground
40	CML-I	Tx6n	Transmitter Inverted Data Input
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input
42	OIVIL 1	GND	Ground
43	CML-I	Tx8n	Transmitter Inverted Data Input
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input
45	OIVIL 1	GND	Ground
46		Reserved	Cround
47		VS1	
48		VccRx1	+3.3V Power supply
49		VS2	
50		VS3	
51		GND	Ground
52	CML-O	Rx7p	Receiver Non-Inverted Data Output
53	CML-O	Rx7n	Receiver Inverted Data Output
54		GND	Ground
55	CML-O	Rx5p	Receiver Non-Inverted Data Output
56	CML-O	Rx5n	Receiver Inverted Data Output
57		GND	Ground
58		GND	Ground
59	CML-O	Rx6n	Receiver Inverted Data Output
60	CML-O	Rx6p	Receiver Non-Inverted Data Output
61		GND	Ground
62	CML-O	Rx8n	Receiver Inverted Data Output
63	CML-O	Rx8p	Receiver Non-Inverted Data Output
64		GND	Ground
65		NC	
66		Reserved	
67		VccTx1	+3.3V Power supply
68		VCC2	+3.3V Power supply

69		Reserved	
70		GND	Ground
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input
72	CML-I	Tx7n	Transmitter Inverted Data Input
73		GND	Ground
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input
75	CML-I	Tx5n	Transmitter Inverted Data Input
76		GND	Ground

Mechanical Specifications

The connector is compatible with the QSFP-DD specification.

Length (m)	Cable AWG	
1.5	30	
2.5	28	

Regulatory Compliance

Feature	Test Method	Performance	
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883C Method 3015.7	Class 1(>2000 Volts)	
Electromagnetic Interference(EMI)	FCC Class B CENELEC EN55022 Class B	Compliant with	
microrenee(Eivii)	CISPR22 ITE Class B	Claridardo	
RF Immunity(RFI)	IEC61000-4-3	Typically Show no Measurable Effect from a 10V/m Field Swept from 80 to 1000MHz	
RoHS Compliance	RoHS Directive 2011/6/5/EU and it's Amendment Directives	RoHS 6/6 compliant	