

400Gb/s OSFP DR4 500m SMF Optical Transceiver D-OP4CNH-N00

Product Specification

Preliminary

Features

- OSFP MSA compliant
- Parallel 4 Optical Lanes
- IEEE802.3bs Specification compliant
- Up to 500m transmission on single mode fiber (SMF) with FEC
- Operating case temperature: 0 to 70°C
- 8x53.125Gb/s electrical interface (400GAUI-8)
- Data Rate 106.25Gbps (PAM4) per channel.
- Maximum power consumption 12W
- MPO-12 connector
- RoHS compliant

Applications

- 400G Ethernet
- Infiniband interconnects
- Datacenter Enterprise networking

Address: Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park, Shenzhen, China Tel: +86-755-26819856 Web:www.do-networks.com 1 / 21

Part Number Ordering Information

	400G OSFP DR4 500m with FEC optical transceiver with full real- time digital diagnostic monitoring and pull tab
	time digital diagnostic monitoring and pull tab

Address : Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park,Shenzhen,China Tel: +86-755-26819856 Web:www.do-networks.com 2 / 21

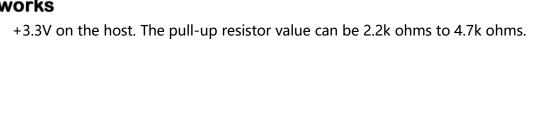
1. General Description

This product is a 400Gb/s Octal Small Form-factor Pluggable (OSFP) optical module designed for 500m optical communication applications. The module converts 8 channels of 50Gb/s (PAM4) electrical input data to 4 channels of parallel optical signals, each capable of 100Gb/s operation for an aggregate data rate of 400Gb/s. Reversely, on the receiver side, the module converts 4 channels of parallel optical signals of 100Gb/s each channel for an aggregate data rate of 400Gb/s into 8 channels of 50Gb/s (PAM4) electrical output data.

An optical fiber cable with an MTP/MPO-12 connector can be plugged into the OSFP DR4 module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through an OSFP MSA-compliant edge type connector.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the OSFP Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

2. Functional Description


The module incorporates 4 parallel channels on 1310nm center wavelength, operating at 100G per channel. The transmitter path incorporates a quad channel EML driver together with 4 parallel EMLs. On the receiver path, a PD array is connected with a quad channel TIA to convert the parallel 400Gb/s optical input into 4 channels of parallel 100Gb/s (PAM4) electrical signals. A DSP basis gearbox is used to convert 8 channels of 25GBaud PAM4 signals into 4 channels of 50GBaud PAM4 signals and also an 8-channel retimer and FEC block are integrated in this DSP. The electrical interface is compliant with IEEE 802.3bs and OSFP MSA in the transmitting and receiving directions, and the optical interface is compliant to OSFP MSA with MPO-12 connector.

A single +3.3V power supply is required to power up this product. As per MSA specifications the module offers 4 low speed hardware control pins: SCL, SDA, INT/RSTn and LPWn/PRSn

SCL and SDA are a 2-wire serial interface between the host and module using the I2C protocol. SCL is defined as the serial interface clock signal and SDA as the serial interface data signal. Both signals are open-drain and require pull-up resistors to

Address: Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park, Shenzhen, China Tel: +86-755-26819856 Web:www.do-networks.com 3 / 21

Address : Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park,Shenzhen,China Tel: +86-755-26819856 Web:www.do-networks.com 4 / 21

INT/RSTn is a dual function signal that allows the module to raise an interrupt to the host and also allows the host to reset the module. Reset is an active-low signal on the host which is translated to an active-low signal on the module. Interrupt is an active-high signal on the module which gets translated to an active-low signal on the host. The INT/RSTn signal operates in 3 voltage zones to indicate the state of Reset for the module and Interrupt for the host. Figure 1 shows these 3 zones.

LPWn/PRSn is a dual function signal that allows the host to signal Low Power mode and the module to indicate Module Present. Low Power mode is an active-low signal on the host which gets converted to an active-low signal on the module. Module Present is controlled by a pull-down resistor on the module which gets converted to an active-low logic signal on the host. The LPWn/PRSn signal operates in 3 voltage zones to indicate the state of Low Power mode for the module and Module Present for the host. Figure 1 shows these 3 zones.



Figure 1. Voltage Zones

Address: Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park, Shenzhen, China Tel: +86-755-26819856 Web:www.do-networks.com 5 / 21

3. Transceiver Block Diagram

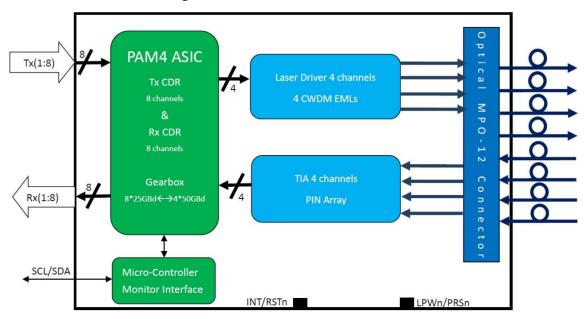


Figure 2. Transceiver Block Diagram

4. Pin Assignment and Description

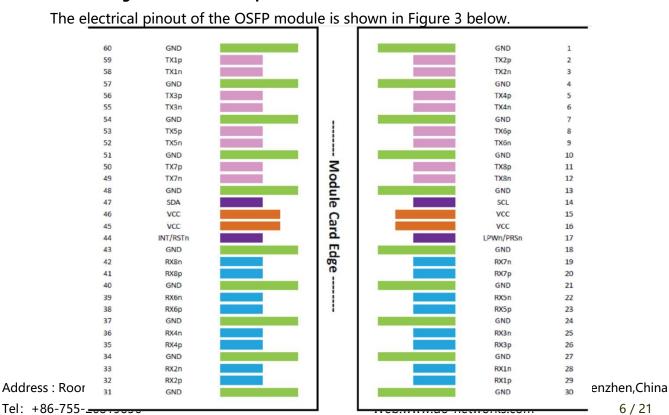


Figure 3. MSA Compliant Connector

Address : Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park,Shenzhen,China Tel: +86-755-26819856 Web:www.do-networks.com 7 / 21

Pin Definition

Pin#	Symbol	Description	Logic	Direction	Plug Sequence
1	GND		Ground		1
2	TX2p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
3	TX2n	Transmitter Data Inverted	CML-I	Input from Host	3
4	GND		Ground		1
5	TX4p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
6	TX4n	Transmitter Data Inverted	CML-I	Input from Host	3
7	GND		Ground		1
8	ТХ6р	Transmitter Data Non-Inverted	CML-I	Input from Host	3
9	TX6n	Transmitter Data Inverted	CML-I	Input from Host	3
10	GND		Ground		1
11	TX8p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
12	TX8n	Transmitter Data Inverted	CML-I	Input from Host	3
13	GND		Ground		1
14	SCL	2-wire Serial interface clock	LVCMOS- I/O	Bi-directional	3
15	VCC	+3.3V Power		Power from Host	2
16	VCC	+3.3V Power		Power from Host	2
17	LPWn/PRSn	Low-Power Mode / Module Present	Multi-Level	Bi-directional	3
18	GND		Ground		1
19	RX7n	Receiver Data Inverted	CML-O	Output to Host	3
20	RX7p	Receiver Data Non-Inverted	CML-O	Output to Host	3
21	GND		Ground		1
22	RX5n	Receiver Data Inverted	CML-O	Output to Host	3
23	RX5p	Receiver Data Non-Inverted	CML-O	Output to Host	3
24	GND		Ground		1
25	RX3n	Receiver Data Inverted	CML-O	Output to Host	3
26	RX3p	Receiver Data Non-Inverted	CML-O	Output to Host	3
27	GND		Ground		1
28	RX1n	Receiver Data Inverted	CML-O	Output to Host	3
29	RX1p	Receiver Data Non-Inverted	CML-O	Output to Host	3
30	GND		Ground		1
31	GND		Ground		1

Address : Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park,Shenzhen,China Tel: +86-755-26819856 Web:www.do-networks.com 8 / 21

32	RX2p	Receiver Data Non-Inverted	CML-O	Output to Host	3
33	RX2n	Receiver Data Inverted	CML-O	Output to Host	3
34	GND		Ground		1
35	RX4p	Receiver Data Non-Inverted	CML-O	Output to Host	3

Address : Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park,Shenzhen,China Tel: +86-755-26819856 Web:www.do-networks.com 9 / 21

36	RX4n	Receiver Data Inverted	CML-O	Output to Host	3
37	GND		Ground		1
38	RX6p	Receiver Data Non-Inverted	CML-O	Output to Host	3
39	RX6n	Receiver Data Inverted	CML-O	Output to Host	3
40	GND		Ground		1
41	RX8p	Receiver Data Non-Inverted	CML-O	Output to Host	3
42	RX8n	Receiver Data Inverted	CML-O	Output to Host	3
43	GND		Ground		1
44	INT/RSTn	Module Interrupt / Module Reset	Multi-Level	Bi-directional	3
45	VCC	+3.3V Power		Power from Host	2
46	VCC	+3.3V Power		Power from Host	2
47	SDA	2-wire Serial interface data	LVCMOS-	Bi-directional	3
			I/O		
48	GND		Ground		1
49	TX7n	Transmitter Data Inverted	CML-I	Input from Host	3
50	ТХ7р	Transmitter Data Non-Inverted	CML-I	Input from Host	3
51	GND		Ground		1
52	TX5n	Transmitter Data Inverted	CML-I	Input from Host	3
53	TX5p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
54	GND		Ground		1
55	TX3n	Transmitter Data Inverted	CML-I	Input from Host	3
56	ТХ3р	Transmitter Data Non-Inverted	CML-I	Input from Host	3
57	GND		Ground		1
58	TX1n	Transmitter Data Inverted	CML-I	Input from Host	3
59	TX1p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
60	GND		Ground		1

Address : Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park,Shenzhen,China Tel: +86-755-26819856 Web:www.do-networks.com 10 / 21

5. Recommended Power Supply Filter

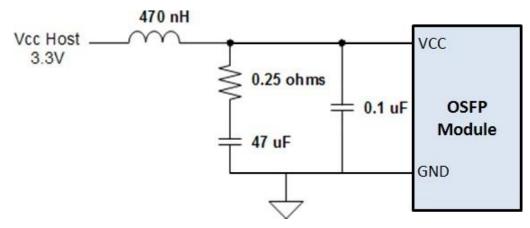


Figure 4. Recommended Power Supply Filter

6. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Units	Notes
Storage Temperature	Ts	-40	85	degC	
Operating Case Temperature	T _{OP}	0	70	degC	
Power Supply Voltage	V _{CC}	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	

7. Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typical	Max	Units	Notes
Operating Case						
Temperature	T _{OP}	0		70	degC	
Power Supply Voltage	V _{CC}	3.135	3.3	3.465	٧	
Data Rate, each Lane			26.5625		GBd	PAM4
Data Rate Accuracy		-100		100	ppm	
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴		
Post-FEC Bit Error Ratio				1x10 ⁻¹²		1
Link Distance	D	0.5		500	m	2

Address: Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park, Shenzhen, China Tel: +86-755-26819856 Web:www.do-networks.com 11 / 21

Notes:

- 1. FEC provided by host system.
- 2. FEC required on host system to support maximum distance.

Address : Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park,Shenzhen,China Tel: +86-755-26819856 Web:www.do-networks.com 12 / 21

8. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Test Point	Min	Typical	Max	Units	Notes
Power Consumption				12	W	
Supply Current	lcc			3.64	Α	
	Transn	nitter (each L	ane)			
Signaling Rate, each Lane	TP1	26.56	525 ± 100 p	pm	GBd	
Differential pk-pk Input Voltage Tolerance	TP1a	900			mVpp	1
Differential Termination Mismatch	TP1			10	%	
Differential Input Return Loss	TP1	IEEE 802.3- 2015 Equation (83E-5)			dB	
Differential to Common Mode Input Return Loss	TP1	IEEE 802.3- 2015 Equation (83E-6)			dB	
Module Stressed Input Test	TP1a	See IEEE	802.3bs 12	0E.3.4.1		2
Single-ended Voltage Tolerance Range (Min)	TP1a	-	-0.4 to 3.3		V	
DC Common Mode Input Voltage	TP1	-350		2850	mV	3
	Recei	iver (each Lai	ne)			
Signaling Rate, each lane	TP4	26.56	25 ± 100 p	ppm	GBd	
Differential Peak-to-Peak Output Voltage	TP4		771 8 2 1 1	900	mVpp	
s: Room 426 Bu, No.4 Building, 19 AC Common Mode Output 36-755-26819856 Voltage RMS	·. Soπware P TP4	ark, Keji Middl We	e 314, Miadle b:www.do-i	e Zone, Hı-Te netw ∳ ∤ 5 .con	n mV	nenznen 13

Addre ina 1 Tel: + Voltage, RMS

Differential Termination Mismatch	TP4			10	%	
Differential Output Return Loss	TP4	IEEE 802.3- 2015 Equation (83E-2)				
Common to Differential Mode Conversion Return Loss	TP4	IEEE 802.3- 2015 Equation (83E-3)				
Transition Time, 20% to 80%	TP4	9.5			ps	
Near-end Eye Symmetry Mask Width (ESMW)	TP4		0.265		UI	
Near-end Eye Height, Differential	TP4	70			mV	
Far-end Eye Symmetry Mask Width (ESMW)	TP4		0.2		UI	
Far-end Eye Height, Differential	TP4	30			mV	
Far-end Pre-cursor ISI Ratio	TP4	-4.5		2.5	%	
Common Mode Output Voltage (Vcm)	TP4	-350		2850	mV	3

Notes

- 1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 2. Meets BER specified in IEEE 802.3bs 120E.1.1.
- 3. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

Address: Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park, Shenzhen, China Tel: +86-755-26819856 Web:www.do-networks.com 14 / 21

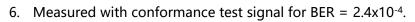
9. Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Units	Notes
Center Wavelength	λс	1304.5	1310	1317.5	nm	
		Transmitt	er			
Data Rate, each Lane		53.1	25 ± 100 p	pm	GBd	
Modulation Format			PAM4	T		
Side-mode Suppression Ratio	SMSR	30			dB	Modulated
Average Launch Power, each Lane	P_{AVG}	-2.9		4	dBm	1
Outer Optical Modulation Amplitude (OMA _{outer}), each Lane	Р _{ОМА}	-0.8		4.2	dBm	2
Launch Power in OMA _{outer} minus TDECQ, each Lane		-2.2			dB	
Transmitter and Dispersion Eye Closure for PAM4, each Lane	TDECQ			3.4	dB	
Extinction Ratio	ER	3.5			dB	
RIN _{21.4} OMA	RIN			-136	dB/Hz	
Optical Return Loss Tolerance	TOL			21.4	dB	
Transmitter Reflectance	T_R			-26	dB	
Average Launch Power of OFF Transmitter, each Lane	P _{off}			-15	dBm	
		Receiver				
Data Rate, each Lane		53.125 ± 100 ppm			GBd	
Modulation Format			PAM4			

Address : Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park,Shenzhen,China Tel: +86-755-26819856 Web:www.do-networks.com 15 / 21

Damage Threshold, each Lane	TH _d	5		dBm	3
Average Receive Power, each		-5.9	4	dBm	4

Address : Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park,Shenzhen,China Tel: +86-755-26819856 Web:www.do-networks.com 16 / 21


Lane						
Receive Power (OMA _{outer}), each Lane				4.2	dBm	
Receiver Sensitivity (OMA _{outer}), each Lane	SEN			-4.4	dBm	5
Stressed Receiver Sensitivity (OMA _{outer}), each Lane	SRS			-1.9	dBm	6
Receiver Reflectance	R_R			-26	dB	
LOS Assert	LOSA	-30			dBm	
LOS De-assert	LOSD			-12	dBm	
LOS Hysteresis	LOSH	0.5			dB	
Stressed C	onditions fo	or Stress R	eceiver Sens	sitivity (No	te 7)	
Stressed Eye Closure for PAM4 (SECQ), Lane under Test			3.4		dB	
OMA _{outer} of each Aggressor Lane			4.2		dBm	

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Even if the TDECQ < 1.4 dB, the OMA_{outer} (min) must exceed the minimum value specified here.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.
- 4. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 5. Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with SECQ of 0.9 dB.

Address: Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park, Shenzhen, China Tel: +86-755-26819856 Web:www.do-networks.com 17 / 21

Address : Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park,Shenzhen,China Tel: +86-755-26819856 Web:www.do-networks.com 18 / 21

7. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

10. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min	Max	Units	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_lbias_Ch	-10%	10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1

Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Address: Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park,Shenzhen,China Tel: +86-755-26819856 Web:www.do-networks.com 19 / 21

11. Mechanical Dimensions

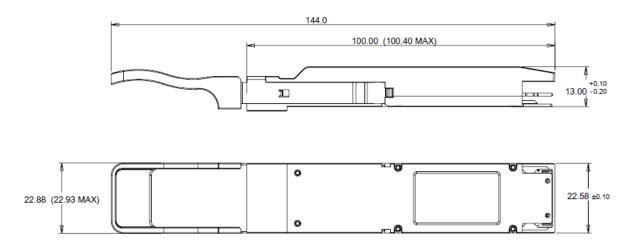


Figure 5. Mechanical Outline

12. ESD

This transceiver is specified as ESD threshold 1kV for high speed data pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22- A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Address: Room 426 Bu,No.4 Building, 1st. Software Park, KeJi Middle 3rd, Middle Zone, Hi-Tech Park, Shenzhen, China Tel: +86-755-26819856 Web:www.do-networks.com 20 / 21

13. Laser Safety

This is a Class 1 Laser Product according to EN 60825-1:2014. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.