

400G QSFP-DD Direct Attach Cable -PAM4 Datasheet

General Description

QSFP-DD passive copper cable assembly feature eight differential copper pairs, providing four data transmission channels at speeds up to 56Gbps(PAM4) per channel, and meets 400G Ethernet and InfiniBand Enhanced Data Rate(EDR) requirements. Available in a broad rang of wire gages-from 28AWG through 30AWG-this 400G copper cable assembly features low insertion loss and low cross talk.

QSFP-DD uses PAM4 signals for transmission, which doubles the rate. However, there are more stringent requirements for cable insertion loss. For detailed requirements, please see High Speed Characteristics.

Features and Benefits

- Compatible with IEEE 802.3bj and IEEE 802.3cd
- Supports aggregate data rates of 400Gbps(PAM4)
- Optimized construction to minimize insertion loss and cross talk
- Pull-to-release slide latch design
- 28AWG through 30AWG cable
- Straight and break out assembly configurations available
- Customized cable braid termination limits EMI radiation
- Customizable EEPROM mapping for cable signature
- RoHS omplia

Product Applications

- Switches, servers and routers
- Data Center networks
- Storage area networks
- High performance computing
- Telecommunication and wireless infrastructure
- Medical diagnostics and networking
- Test and measurement equipment

Industry Standards

- 400G Ethernet(IEEE 802.3cd)
- InfiniBand EDR

High Speed Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Note
Differential Impedance	TDR	90	100	110	Ώ	
Insertion loss	SDD21	-16.06			dB	At 13.28 GHz
Differential Return Loss	SDD11			See 1	dB	At 0.05 to 4.1 GHz
Differential Return 2033	SDD22			See 2	dB	At 4.1 to 19 GHz
Common-mode to common-mode output return loss	SCC11 SCC22			-2	dB	At 0.2 to 19 GHz
Differential to common-mode	SCD11			See 3	dB	At 0.01 to 12.89 GHz
Teluin 1055	30022			See 4	dB dB dB	At 12.89 to 19 GHz
			-10			At 0.01 to 12.89 GHz
Conversion Loss	SCD21-IL			See 5	dB	At 12.89 to 15.7 GHz
				-6.3		At 15.7 to 19 GHz
Notes:						

1. Reflection Coefficient given by equation SDD11(dB) $< -16.5 + 2 \times SQRT(f)$, with f in GHz

2. Reflection Coefficient given by equation SDD11(dB) < $-10.6 + 14 \times \log 10(f/5.5)$, with f in GHz 3. Reflection Coefficient given by equation SCD11(dB) < $-22 + (20/25.78)^*$ f, with f in GHz 4. Reflection Coefficient given by equation SCD11(dB) < $-15 + (6/25.78)^*$ f, with f in GHz

5. Reflection Coefficient given by equation SCD21(dB) < -27 + (29/22)*f, with f in GHz

Pin Descriptions

QSFP-DD Pin Function Definition

Pin	Logic	Symbol	Description
1		GND	Ground
2	CML-I	Tx2n	Transmitter Inverted Data Input
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input
4		GND	Ground
5	CML-I	Tx4n	Transmitter Inverted Data Input
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input
7		GND	Ground
8	LVTTL-I	ModSelL	Module Select
9	LVTTL-I	ResetL	Module Reset
10		Vcc Rx	+3.3V Power Supply Receiver

11	LVCMOS- I/O	SCL	2-wire serial interface clock
12	LVCMOS- I/O	SDA	2-wire serial interface data
13		GND	Ground
14	CML-O	Rx3p	Receiver Non-Inverted Data Output
15	CML-O	Rx3n	Receiver Inverted Data Output
16		GND	Ground
17	CML-O	Rx1p	Receiver Non-Inverted Data Output
18	CML-O	Rx1n	Receiver Inverted Data Output

19 GND Ground

20		GND	Ground
21	CML-O	Rx2n	Receiver Inverted Data Output
22	CML-O	Rx2p	Receiver Non-Inverted Data Output
23		GND	Ground
24	CML-O	Rx4n	Receiver Inverted Data Output
25	CML-O	Rx4p	Receiver Non-Inverted Data Output
26		GND	Ground
27	LVTTL-O	ModPrsL	Module Present
28	LVTTL-O	IntL	Interrupt
29		Vcc Tx	+3.3V Power supply transmitter
30		Vcc1	+3.3V Power supply
31	LVTTL-I	LPMode	Low Power Mode
32		GND	Ground
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input
34	CML-I	Tx3n	Transmitter Inverted Data Input
35		GND	Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Input
38		GND	Ground
39		GND	Ground
40	CML-I	Tx6n	Transmitter Inverted Data Input
41	CML-I	Tx6p	Transmitter Non-Inverted Data Input
42		GND	Ground
43	CML-I	Tx8n	Transmitter Inverted Data Input
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input
45		GND	Ground
46		Reserved	
47		VS1	
48			+3.3V Power supply
49		V 52	
50			Cround
52			Bocoiver Nen-Inverted Data Output
52		Rx7p Py7n	Receiver Inverted Data Output
53			Groupd
55	CML-O	Ry5p	Receiver Non-Inverted Data Output
56		Rx5p	Receiver Inverted Data Output
57		GND	Ground
58		GND	Ground
59	CMI -O	Rx6n	Receiver Inverted Data Output
60	CMI -O	Rx6p	Receiver Non-Inverted Data Output
61		GND	Ground
62	CML-O	Rx8n	Receiver Inverted Data Output
63	CML-O	Rx8p	Receiver Non-Inverted Data Output
64	•	GND	Ground
65		NC	
66		Reserved	
67		VccTx1	+3.3V Power supply
68		VCC2	+3.3V Power supply

69		Reserved	
70		GND	Ground
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input
72	CML-I	Tx7n	Transmitter Inverted Data Input
73		GND	Ground
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input
75	CML-I	Tx5n	Transmitter Inverted Data Input
76		GND	Ground

Mechanical Specifications

The connector is compatible with the QSFP-DD specification.

Length (m)	Cable AWG
1.5	30
2.5	28

Regulatory Compliance

Feature	Test Method	Performance	
Electrostatic Discharge			
(ESD) to the Electrical	MIL-STD-883C Method 3015.7	Class 1(>2000 Volts)	
Pins			
Flootromognotio	FCC Class B	Compliant with	
Interference(EMI)	CENELEC EN55022 Class B	Standards	
	CISPR22 ITE Class B		
		Typically Show no	
PE Immunity (PEI)	JEC61000 4 2	Measurable Effect from a	
	1EC01000-4-3	10V/m Field Swept from	
		80 to 1000MHz	
Pous Compliance	RoHS Directive 2011/6/5/EU	PoUS 6/6 compliant	
	and it's Amendment Directives	RUHS 0/0 compliant	